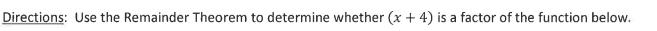
	 \mathbf{v}	\sim
Name:	h	E'

POLYNOMIAL FUNCTIONS REVIEW

Directions: Divide each polynomial.

1.)
$$(5x^{3} - 6x^{2} + 8) \div (x - 4)$$

1.) $(5x^{3} - 6x^{2} + 8) \div (x - 4)$
2.) $(x^{4} + 5x^{3} + 6x^{2} - x - 2) \div (x^{2} - 3x + 2)$
 $x^{4} - 3x + 4$
 $x^{4} - 3x + 4$

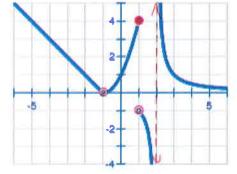

3.)
$$f(x) = 5 - 2x - 3x^2$$

 $x \to -\infty$ $f(x) \to \frac{-\infty}{2}$
 $x \to \infty$ $f(x) \to \frac{-\infty}{2}$

Directions: Determine whether the function is even, odd, or neither. Then describe the symmetry.

6.) $f(x) = x^4 - x^2 + 4$ $f(-x) = x^4 - x^4 + 4$ EVEN $\rightarrow \sqrt{-Axis} = \sqrt{4}$ $f(x) = x^3 - x - 2$ $f(x) = x^3 - x - 2$ $f(-x) = -x^3 + x - 2$ $f(-x) = -x^3 + x - 2$ $f(-x) = -x^3 + x$ $f(-x) = -x^3 + x - 2$ $f(-x) = -x^3 + x - 2$ $f(-x) = -x^3 + x - 2$ $f(-x) = -x^3 + x - 2$

Directions: State the increasing, decreasing and constant intervals in interval notation.


9.) INCREASING: $(-1, 1) \cup$ 10.) DECREASING: $(-\infty, -1) \cup (1, 2) \cup (2, \infty)$ 11.) CONSTANT: NONE

12.)
$$f(x) = x^3 - x^2 - 24x - 5.6$$
 -4 1 -1 -24 -56
1 -5 -4 -40 16
1 -5 -4 -40

Directions: Use synthetic division to find the remainder. Is the divisor a factor of the polynomial?

13.)
$$(2x^{4} + 14x^{3} - 2x^{2} - 14x) \div (x + 7)$$

 $-7 \begin{bmatrix} 2 & 14 & -2 & -14 & 0 \\ -14 & 0 & 14 & 0 \\ 2 & 0 & -2 & 0 \end{bmatrix} 0 \begin{bmatrix} -5 & -17 & 15 & -25 \\ -15 & -100 & 725 \\ 3 & -32 & -145 \end{bmatrix} - 700$
 $(X+7)$ 15 A PACTOR
 $(X+5)$ 15 NOT A PACTOR

Directions: Write a polynomial function with the given zeros that has the least degree and all real coefficients.

Directions: Given the description of each polynomial function, answer the questions.

- 18.) The graph of a polynomial function f(x) has a root of x = -2 (multiplicity of 3)
 - a.) Does the graph cross or touch the x-axis at x = -2? (ROGS \rightarrow Ob) MULT \rightarrow (ROGS)
 - b.) What is the least degree of f(x)? THIRD DEGREE
 - c.) Write f(x) with real coefficients and with the least degree. f(x) = (x+d)(x+d)(x+d)
 - $F(x) = (x+b)(x^{b} + 4x + 4)$ $f(x) = x^{3} + 4x^{b} + 4x + 8x + 8$ $F(x) = x^{3} + 6x^{b} + 12x + 8$
- 19.) The graph of a polynomial function f(x) has a root at x = -4 (multiplicity of 2) and a root at x = -3i.

EVEN MULT > TOUCH

- a.) Does the graph cross or touch the x-axis at x = -4? Touc H
- b.) Does the graph cross or touch the x-axis at x = -3i? NEITHER \rightarrow MOWARY
- c.) What is the least degree of f(x)? FOULTH DEORER
- d.) Write f(x) with real coefficients and with the least degree.

$$f(x) = (x + 4)(x + 4)(x + 3i)(x - 3i)$$

$$f(x) = (x^{4} + 8x + 16)(x^{4} + 9)$$

$$f(x) = (x^{4} + 8x^{3} + 8x^{3} + 72x + 14x^{4} + 144)$$

$$f(x) = \sqrt{4} + 8x^{3} + 35x^{4} + 72x + 144$$

Directions: Use Descartes' Rule of Signs to determine the possible amount of positive and negative real zeros.

20.) $f(x) = 4x^2 - 8x + 3$ $f(x) = 4x^2 - 8x + 3$ $f(x) = -5x^3 + x^2 - x + 5$ $g(x) = -5x^3 + x^2 - x + 5$ $g(x) = -5x^$

Directions: Use Synthetic Division to determine whether each value is an upper bound, lower bound, a zero or neither.

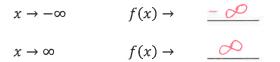
23.) $f(x) = x^4 - 4x^3$	+ 16x - 16	-4 1 -4 0 10 -16	2 1 - 11 0 110 - 110
a.) $x = -4$	OWER BOUND	-4 32-128 448	2 - 4 - 8 14
b.) $x = 4$ U	PPER BUSIND	1 -8 30 -11/ +32	1-2-480
c.) $x = 2$ 2	ERO	4/1-4016-16	-1 1 = 4 0 (4 - 14
d. $x = -1$	VEITHER	40064	-1 5 -5 -11
		10010148	1 -5 5 11 -A7

Directions: Determine all properties of each polynomial function and sketch a graph WITHOUT a graphing calculator.

24.) $f(x) = x^3 + 3x^2 - 4x - 12$

- a.) Determine the possible number of rational roots.
- Possible Roots: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$

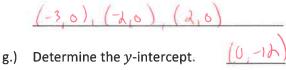
P: 1, 2, 3, 4, 6, 12

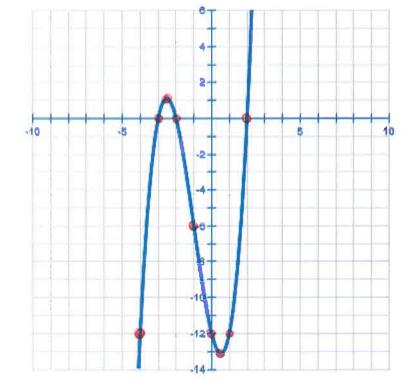

Q: 1

- b.) Determine the possible number of positive and negative real zeros.
 - $f(x) \rightarrow + + - 1 CHANGES$ # of possible positive zeros: $f(-x) \rightarrow - + + - 2 CHANGES$ # of possible negative zeros: $2 \rightarrow 0$
- c.) Determine the linear factorization and zeros. Be sure to state if any zeros have multiplicity.

2/13-4-12	OTHER POINTS ON GRAPH	
2 10 12	1 1 3 -4 -12	-413-4-12
1560	$\frac{1}{1 + 0} = \frac{1}{1 + 1} = \frac{1}{1 + 1}$	-4 14 0 1 7 0 1 - 12
χ^{λ} +5 × + φ	-1 3 -4 -12	=> (-4, -12)
(x+a)(x+3)	$\frac{-1}{2} - \frac{1}{2} - \frac{1}{2} = 2 \left(-\frac{1}{2} - \frac{1}{2} \right)$	

FACTORS: $(\chi - \lambda)(\chi + \lambda)(\chi + 3)$ X= =2, X=-3 ZEROS:


d.) Determine the end behavior.


e.) Determine the possible number of turning points.

Max # of turning points:

- 2
- f.) Determine the *x*-intercept(s).

- <u>GIVEN</u>: Maximum: (-2.53, 1.13)
- <u>GIVEN</u>: Minimum: (0.53, -13.13)

- 25.) $f(x) = 2x^3 7x^2 5x + 4$
- Determine the possible number of rational roots. a.)

P. I. a. d Qilid

Possible Roots: $\frac{t}{1}, \frac{t}{2}, \frac{t$

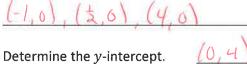
Determine the possible number of positive and negative real zeros. b.)

$f(x) \rightarrow +$	-	-	ł	2 CHANGES	# of possible positive zeros: 🔜 🔍 🔍
f(-x)	-	Ŧ	+	1 CHANGE	# of possible negative zeros:

Determine the linear factorization and zeros. Be sure to state if any zeros have multiplicity. c.)

ER POINTS ON GRAPH	
12-7-54	3 d -7 -5 4
d -5 -10 = (1, -6)	6 - 5 - 24
2 -5 -10 1-6	2 -1 -8 1-20
2-7-54	= (3, -20)
$\frac{4 - 6 - 2}{2} = (2, -18)$	
	$\frac{1}{12} \frac{1}{12} - 7 - 5 + \frac{1}{12} = 2 (1, -6)$ $\frac{1}{12} \frac{1}{12} - 7 - 5 + \frac{1}{12} = 2 (1, -6)$ $\frac{1}{12} \frac{1}{12} - 7 - 5 + \frac{1}{12} = 2 (2, -18)$

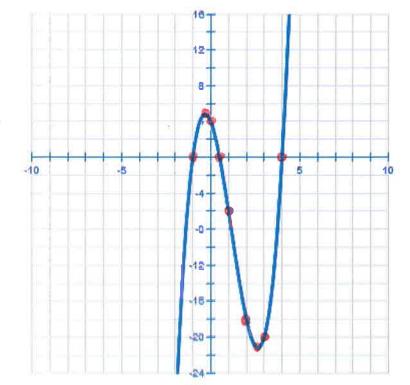
X+1)(2X-1)(X-4) FACTORS: ZEROS:


d.) Determine the end behavior.

$x \to -\infty$	$f(x) \rightarrow$	-00	
$x \to \infty$	$f(x) \rightarrow$	\sim	

Determine the possible number of turning points, e.)

Max # of turning points:


- f.) Determine the *x*-intercept(s).

Determine the *y*-intercept. g.)

Maximum: (-0.32, 4.82)GIVEN:

(2.65, -21.19)GIVEN: Minimum:

$$P(-k, -k, -5, -k, -1, -k)$$
26) $f(x) = -x^4 + 4x^3 + x^2 - 16x + 12$
a) Determine the possible number of rational roots.
Possible Roots: $\frac{k}{2}, \frac{k}{2}, \frac{k}{2$

<u>GIVEN</u>: Minimum: (1.46, -1.32)

P. 1, 2, 4,810 27.) $f(x) = x^3 + 8x^2 + 20x + 16$ 6 1 a.) Determine the possible number of rational roots. Possible Roots: 1) t 2 t 4 t 8 2/4 b.) Determine the possible number of positive and negative real zeros. # of possible positive zeros: ______ f(x) -> + + + + O CHANGES F(-x) - + - + 3 CHANGES c.) Determine the linear factorization and zeros. Be sure to state if any zeros have multiplicity. OTHER GRAPH POINTS 20 16 -2 -12 -4p -1 1 8 20 10 -1 -7 => (-1, 3) Xt + lex + 8 -3 | 8 = 20 = 14 -3 = -15 = -15 = -3 (-3, 1)(x+4) (x+a) -5 1 8 20 KG $\frac{-5}{3} \frac{1}{5} \frac{1}{-4} = FACTORS: \frac{(\chi + 4)(\chi + 2)^2}{1}$ => (-5, -9) ZEROS: X= -4, -2 (MULT OF 2) d.) Determine the end behavior. $x \to -\infty$ $f(x) \to -\mathcal{O}$ $f(x) \rightarrow \qquad \frown \bigcirc$ $x \to \infty$ e.) Determine the possible number of turning points. Max # of turning points: f.) Determine the x-intercept(s). -10 10 (-4,0)(-2,0)g.) Determine the *y*-intercept. (0, 16)..... 12-Maximum: (-3.33, 1.19)GIVEN: 10

$$\begin{array}{c} p: \ l_{1}, \ 2, \ 4, \ 5, \ lot \\ 28. \ f(x) = -3x^{3} + 20x^{2} - 36x + 16 \\ 3. \ Determine the possible number of rational roots, \\ \\ Possible Roots: \frac{4}{5}, \frac{1}{5}, \frac{1}{$$

-12-

16

20

- g.) Determine the *y*-intercept. (0, 14)
- <u>GIVEN</u>: Maximum: (3.19, 7.30)
- <u>GIVEN</u>: Minimum: (1.25, -3.61)

P: 1, a, 3, 4, 6, 9, + 12, 18, 30 29.) $f(x) = x^4 - 5x^2 - 36$ 6:1 Determine the possible number of rational roots. a.) Possible Roots: $\frac{\pm 1}{4} + 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12$ Determine the possible number of positive and negative real zeros. b.) # of possible positive zeros: $f(x) \rightarrow + - - I CHANGE$ # of possible negative zeros: f(-x) -> + = -1 CHANGE c.) Determine the linear factorization and zeros. Be sure to state if any zeros have multiplicity. CTHER PUINTS 52 GRAPH 0 -5 0 - 34 = (1, -4) = (1, -4)3 9 12 36 $-1 \begin{vmatrix} 0 & -5 & 0 & -30 \\ -1 & 1 & 4 & -4 \\ -1 & -1 & -4 & -40 \end{vmatrix} \Rightarrow (-1, -40)$ -3 | 3 4 12 -3 0 -12 $2 \begin{vmatrix} 0 & -5 & 0 & -36 \\ 2 & 4 & -2 & -4 \\ 1 & 2 & -1 & -21 & -40 \end{vmatrix} = 2 \begin{pmatrix} -2 & -36 \\ -2 & -36 \\ -2 & -1 & -21 & -40 \end{pmatrix}$ $x^{2} + 4$ (x + ai)(x - di)=> (2, -40) FACTORS: (X-3)(X+3)(X-2i)(X+di)X= ± 3 X= ± 2i ZEROS: d.) Determine the end behavior. $x \to -\infty$ $f(x) \to$ $f(x) \rightarrow \qquad \bigcirc \qquad \bigcirc$ $\chi \to \infty$ 30-Determine the possible number of turning points. e.) 20 3 Max # of turning points: 10 Determine the *x*-intercept(s). f.) (3,0)(-3,0)40 Determine the *y*-intercept. (0, -36)20 g.) 30 Maximum: (0, -36)GIVEN: 40 Minimum: (-1.58, -42.25) & (1.58, -42.25) GIVEN: